Brain imaging refers to techniques that employ an interaction between brain tissue and various forms of energy (e.g., electromagnetic or particle radiation), rather than physical incision, to capture positional data about the structure and function of the brain. Such data are used to create corresponding brain maps. Structural images delineate brain tissues such as white versus grey matter, vasculature, and bone, based on their physical properties (tissue density or nuclear resonance characteristics). Functional images capture physiological activities in the brain (metabolism, blood flow, chemical composition, absorption) typically coupled to neuronal firing. Functional imaging has two possible aims. In clinical applications the goal is typically to differentiate normal physiological activities in a healthy brain from those in perturbed states (e.g., stroke, Alzheimer’s disease).
Tracks:
Positron emission tomography (PET)
Near infrared spectroscopy (NIRS)
Magnetoencephalogram (MEG)
Electroencephalography (EEG)
Functional magnetic resonance imaging (fMRI)
Important Alert:
X